Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
p /\ T /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~F /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.idempandp /\ T /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~F /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroandp /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~F /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroandp /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroandp /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalsep /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalsep /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
⇒ logic.propositional.notnotp /\ ~(T /\ q) /\ p /\ p /\ ~q /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
⇒ logic.propositional.idempandp /\ ~(T /\ q) /\ p /\ ~q /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
⇒ logic.propositional.notnotp /\ ~(T /\ q) /\ p /\ ~q /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~(T /\ q) /\ p /\ ~q /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
⇒ logic.propositional.idempandp /\ ~(T /\ q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
⇒ logic.propositional.notnotp /\ ~(T /\ q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.idempandp /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoverorp /\ ~q /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))
⇒ logic.propositional.andoveror(p /\ ~q /\ q /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q)
⇒ logic.propositional.compland(p /\ F /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q)
⇒ logic.propositional.falsezeroand(p /\ F) || (p /\ ~q /\ ~r /\ p /\ ~q)
⇒ logic.propositional.falsezeroandF || (p /\ ~q /\ ~r /\ p /\ ~q)
⇒ logic.propositional.falsezeroorp /\ ~q /\ ~r /\ p /\ ~q