Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

p /\ T /\ ((T /\ q) || ~r) /\ T /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ T /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F
logic.propositional.notfalse
p /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ T /\ p /\ ~~(p /\ ~q) /\ ~F
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~F
logic.propositional.notfalse
p /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q) /\ T
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ ~q /\ p /\ p /\ ~q
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q
logic.propositional.truezeroand
p /\ (q || ~r) /\ ~q /\ p /\ ~q
logic.propositional.andoveror
p /\ ((q /\ ~q) || (~r /\ ~q)) /\ p /\ ~q
logic.propositional.compland
p /\ (F || (~r /\ ~q)) /\ p /\ ~q
logic.propositional.falsezeroor
p /\ ~r /\ ~q /\ p /\ ~q