Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~~T /\ ~~T /\ ~F /\ ~~~~(p /\ ~q) /\ T /\ T /\ ~q
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~~T /\ ~F /\ ~~~~(p /\ ~q) /\ T /\ T /\ ~q
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~~T /\ ~F /\ ~~~~(p /\ ~q) /\ T /\ ~q
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ~F /\ ~~~~(p /\ ~q) /\ T /\ ~q
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ~F /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.notfalse
p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ T /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.truezeroand
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~q
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ ~q
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
((p /\ q) || (p /\ ~r)) /\ p /\ ~q
logic.propositional.andoveror
(p /\ q /\ p /\ ~q) || (p /\ ~r /\ p /\ ~q)