Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ ((T /\ q) || ~r) /\ ~F /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ T /\ ~~T /\ T /\ ~q /\ T
⇒ logic.propositional.idempandp /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ T /\ ~~T /\ T /\ ~q /\ T
⇒ logic.propositional.idempandp /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ T /\ ~~T /\ T /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ T /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~q
⇒ logic.propositional.notfalsep /\ ((T /\ q) || ~r) /\ T /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~q
⇒ logic.propositional.truezeroandp /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~q
⇒ logic.propositional.notnotp /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.idempandp /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.notnotp /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~q
⇒ logic.propositional.truezeroandp /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q
⇒ logic.propositional.idempandp /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoverorp /\ ((q /\ p) || (~r /\ p)) /\ ~q
⇒ logic.propositional.andoverorp /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))