Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
T /\ ~~~~(p /\ ~q) /\ ~F /\ p /\ ~~T /\ T /\ ~q /\ T /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~~~(p /\ ~q) /\ ~F /\ p /\ ~~T /\ T /\ ~q /\ T /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~~~(p /\ ~q) /\ ~F /\ p /\ ~~T /\ ~q /\ T /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~~~(p /\ ~q) /\ ~F /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notfalse~~~~(p /\ ~q) /\ T /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnot~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~q /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q) || ~~~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~r) /\ ~q
⇒ logic.propositional.andoverorp /\ ~q /\ ((q /\ ~q) || (~r /\ ~q))
⇒ logic.propositional.complandp /\ ~q /\ (F || (~r /\ ~q))
⇒ logic.propositional.falsezeroorp /\ ~q /\ ~r /\ ~q