Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
T /\ ~~p /\ T /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~q /\ ~F /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandT /\ ~~p /\ T /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~F /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~~p /\ T /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~F /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~~p /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~F /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notfalse~~p /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ T /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~~p /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notfalse~~p /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~q /\ T /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~~p /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandp /\ ~~~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ p /\ ~q /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandp /\ ~q /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandp /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ ~q /\ T /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandp /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~q /\ ((q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~r)
⇒ logic.propositional.andoveror(p /\ ~q /\ q) || (p /\ ~q /\ ~r)
⇒ logic.propositional.compland(p /\ F) || (p /\ ~q /\ ~r)
⇒ logic.propositional.falsezeroandF || (p /\ ~q /\ ~r)
⇒ logic.propositional.falsezeroorp /\ ~q /\ ~r