Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
T /\ ~~T /\ ~F /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ p /\ T /\ ~q /\ T /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.idempandT /\ ~~T /\ ~F /\ ~~(p /\ ~q) /\ p /\ T /\ ~q /\ T /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.truezeroandT /\ ~~T /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.truezeroandT /\ ~~T /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.truezeroandT /\ ~~T /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.notfalseT /\ ~~T /\ T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.truezeroandT /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~F
⇒ logic.propositional.notfalseT /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q /\ T
⇒ logic.propositional.truezeroandT /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.notnotT /\ T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.notnotT /\ p /\ ~q /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.idempandT /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.truezeroandT /\ p /\ ~q /\ p /\ (q || ~r) /\ ~q
⇒ logic.propositional.andoverorT /\ p /\ ~q /\ p /\ ((q /\ ~q) || (~r /\ ~q))
⇒ logic.propositional.complandT /\ p /\ ~q /\ p /\ (F || (~r /\ ~q))
⇒ logic.propositional.falsezeroorT /\ p /\ ~q /\ p /\ ~r /\ ~q