Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
T /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ p /\ ~F /\ T /\ p
⇒ logic.propositional.truezeroandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ p /\ ~F /\ T /\ p
⇒ logic.propositional.truezeroandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p /\ ~F /\ T /\ p
⇒ logic.propositional.truezeroandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p /\ ~F /\ p
⇒ logic.propositional.notfalseT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p /\ T /\ p
⇒ logic.propositional.truezeroandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p /\ p
⇒ logic.propositional.idempandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p
⇒ logic.propositional.notnotT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p
⇒ logic.propositional.truezeroandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p
⇒ logic.propositional.idempandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ p
⇒ logic.propositional.notnotT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~~~(T /\ p /\ ~q) /\ p
⇒ logic.propositional.notnotT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~(T /\ p /\ ~q) /\ p
⇒ logic.propositional.notnotT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ T /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempandT /\ ~~(~~p /\ ~q) /\ ((T /\ T /\ q /\ T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ p