Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
T /\ ~~(p /\ ~q) /\ ~~(T /\ ~~T /\ p /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ~F)
logic.propositional.notnot
T /\ ~~(p /\ ~q) /\ T /\ ~~T /\ p /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ~F
logic.propositional.idempand
T /\ ~~(p /\ ~q) /\ T /\ ~~T /\ p /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ~F
logic.propositional.truezeroand
T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ~F
logic.propositional.truezeroand
T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ~F
logic.propositional.notfalse
T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ T
logic.propositional.truezeroand
T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q
logic.propositional.notnot
T /\ ~~(p /\ ~q) /\ T /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q
logic.propositional.truezeroand
T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q
logic.propositional.notnot
T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ ~q
logic.propositional.idempand
T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
logic.propositional.idempand
T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
T /\ ~~(p /\ ~q) /\ p /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
T /\ ~~(p /\ ~q) /\ ((p /\ q) || (p /\ ~r)) /\ p /\ ~q
logic.propositional.andoveror
T /\ ~~(p /\ ~q) /\ ((p /\ q /\ p /\ ~q) || (p /\ ~r /\ p /\ ~q))