Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

T /\ ~~(p /\ ~q) /\ p /\ ~~T /\ T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~F /\ ~q /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ p /\ ~~T /\ T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~F /\ ~q /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~F /\ ~q /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F /\ ~q /\ ~F /\ T
logic.propositional.idempand
~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F
logic.propositional.notfalse
~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.notnot
p /\ ~q /\ p /\ ~~T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.notnot
p /\ ~q /\ p /\ T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.notnot
p /\ ~q /\ p /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
p /\ ~q /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))
logic.propositional.andoveror
(p /\ ~q /\ q /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.compland
(p /\ F /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.falsezeroand
(p /\ F) || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.falsezeroand
F || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.falsezeroor
p /\ ~q /\ ~r /\ p /\ ~q