Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
T /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~F /\ p /\ ~F
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~F /\ p /\ ~F
⇒ logic.propositional.notfalseT /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ T /\ p /\ ~F
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~F
⇒ logic.propositional.notfalseT /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ T
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p
⇒ logic.propositional.notnotT /\ ~~(p /\ ~q) /\ T /\ T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p
⇒ logic.propositional.notnotT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p
⇒ logic.propositional.idempandT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ (q || ~r) /\ ~q /\ p
⇒ logic.propositional.andoverorT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ((q /\ ~q /\ p) || (~r /\ ~q /\ p))
⇒ logic.propositional.complandT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ((F /\ p) || (~r /\ ~q /\ p))
⇒ logic.propositional.falsezeroandT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ (F || (~r /\ ~q /\ p))
⇒ logic.propositional.falsezeroorT /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~r /\ ~q /\ p