Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
T /\ ~~(p /\ ~q) /\ T /\ ~q /\ p /\ ~F /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T /\ T
⇒ logic.propositional.idempandT /\ ~~(p /\ ~q) /\ T /\ ~q /\ p /\ ~F /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T
⇒ logic.propositional.idempandT /\ ~~(p /\ ~q) /\ T /\ ~q /\ p /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r) /\ T
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.notfalseT /\ ~~(p /\ ~q) /\ ~q /\ p /\ T /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroandT /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.notnotT /\ p /\ ~q /\ ~q /\ p /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempandT /\ p /\ ~q /\ p /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.notnotT /\ p /\ ~q /\ p /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempandT /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.notnotT /\ p /\ ~q /\ p /\ T /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroandT /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempandT /\ p /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroandT /\ p /\ ~q /\ (q || ~r)
⇒ logic.propositional.andoverorT /\ ((p /\ ~q /\ q) || (p /\ ~q /\ ~r))
⇒ logic.propositional.complandT /\ ((p /\ F) || (p /\ ~q /\ ~r))
⇒ logic.propositional.falsezeroandT /\ (F || (p /\ ~q /\ ~r))
⇒ logic.propositional.falsezeroorT /\ p /\ ~q /\ ~r