Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
T /\ ~q /\ ~~T /\ T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F
⇒ logic.propositional.idempandT /\ ~q /\ ~~T /\ T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~F
⇒ logic.propositional.truezeroandT /\ ~q /\ ~~T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~F
⇒ logic.propositional.notfalseT /\ ~q /\ ~~T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroandT /\ ~q /\ ~~T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q)
⇒ logic.propositional.notnotT /\ ~q /\ ~~T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ p /\ ~q
⇒ logic.propositional.idempandT /\ ~q /\ ~~T /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q
⇒ logic.propositional.truezeroandT /\ ~q /\ ~~T /\ (q || ~r) /\ ~q /\ p /\ ~q
⇒ logic.propositional.andoverorT /\ ~q /\ ~~T /\ ((q /\ ~q) || (~r /\ ~q)) /\ p /\ ~q
⇒ logic.propositional.complandT /\ ~q /\ ~~T /\ (F || (~r /\ ~q)) /\ p /\ ~q
⇒ logic.propositional.falsezeroorT /\ ~q /\ ~~T /\ ~r /\ ~q /\ p /\ ~q