Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
T /\ ~F /\ p /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ T /\ ~q /\ T /\ ~~T /\ ~q /\ T
⇒ logic.propositional.idempandT /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ T /\ ~q /\ T /\ ~~T /\ ~q /\ T
⇒ logic.propositional.truezeroandT /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~q /\ T /\ ~~T /\ ~q /\ T
⇒ logic.propositional.truezeroandT /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q /\ T
⇒ logic.propositional.truezeroandT /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.notfalseT /\ ~F /\ p /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.truezeroandT /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.idempandT /\ ~F /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.notnotT /\ ~F /\ p /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.idempandT /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~~T /\ ~q
⇒ logic.propositional.notnotT /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ T /\ ~q
⇒ logic.propositional.truezeroandT /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~q
⇒ logic.propositional.idempandT /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.truezeroandT /\ ~F /\ p /\ ~q /\ (q || ~r) /\ ~q
⇒ logic.propositional.andoverorT /\ ~F /\ p /\ ((~q /\ q) || (~q /\ ~r)) /\ ~q
⇒ logic.propositional.complandT /\ ~F /\ p /\ (F || (~q /\ ~r)) /\ ~q
⇒ logic.propositional.falsezeroorT /\ ~F /\ p /\ ~q /\ ~r /\ ~q