Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
T /\ ~F /\ T /\ ~~(p /\ ~q) /\ ((~q /\ ~F /\ T /\ q) || (~q /\ ~F /\ ~r)) /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p /\ p /\ T
logic.propositional.idempand
T /\ ~F /\ T /\ ~~(p /\ ~q) /\ ((~q /\ ~F /\ T /\ q) || (~q /\ ~F /\ ~r)) /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p /\ T
logic.propositional.truezeroand
T /\ ~F /\ T /\ ~~(p /\ ~q) /\ ((~q /\ ~F /\ T /\ q) || (~q /\ ~F /\ ~r)) /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p
logic.propositional.notfalse
T /\ ~F /\ T /\ ~~(p /\ ~q) /\ ((~q /\ ~F /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ ~F /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ ~F /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ T /\ ~~(p /\ ~q) /\ p
logic.propositional.truezeroand
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ ~F /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ ~F /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ p /\ ~q /\ p
logic.propositional.idempand
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ ~F /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ ~F /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ p
logic.propositional.notfalse
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ T /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
T /\ ~F /\ T /\ p /\ ~q /\ ((~q /\ q) || (~q /\ T /\ ~r)) /\ ~q /\ p
logic.propositional.compland
T /\ ~F /\ T /\ p /\ ~q /\ (F || (~q /\ T /\ ~r)) /\ ~q /\ p
logic.propositional.falsezeroor
T /\ ~F /\ T /\ p /\ ~q /\ ~q /\ T /\ ~r /\ ~q /\ p
logic.propositional.idempand
T /\ ~F /\ T /\ p /\ ~q /\ T /\ ~r /\ ~q /\ p
logic.propositional.truezeroand
T /\ ~F /\ T /\ p /\ ~q /\ ~r /\ ~q /\ p