Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~(~T /\ T) /\ T /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.truezeroand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~(~T /\ T) /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.compland
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~F /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.notfalse
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ T /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.truezeroand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.notfalse
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~T /\ ~~(p /\ ~q /\ T /\ T) /\ ~~(p /\ ~q)
logic.propositional.notnot
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ T /\ ~~(p /\ ~q /\ T /\ T) /\ ~~(p /\ ~q)
logic.propositional.truezeroand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~~(p /\ ~q /\ T /\ T) /\ ~~(p /\ ~q)
logic.propositional.notnot
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ p /\ ~q /\ T /\ T /\ ~~(p /\ ~q)
logic.propositional.idempand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ T /\ T /\ ~~(p /\ ~q)
logic.propositional.idempand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q)
logic.propositional.notnot
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ p /\ ~q
logic.propositional.idempand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q
logic.propositional.truezeroand
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ (q || ~r) /\ ~q /\ p /\ ~q
logic.propositional.andoveror
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ((q /\ ~q) || (~r /\ ~q)) /\ p /\ ~q
logic.propositional.compland
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ (F || (~r /\ ~q)) /\ p /\ ~q
logic.propositional.falsezeroor
T /\ ~(~T /\ T) /\ ~(T /\ ~p) /\ ~q /\ ~r /\ ~q /\ p /\ ~q