Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

T /\ p /\ ~q /\ ~q /\ ((~F /\ T /\ q) || (~F /\ ~r)) /\ ~~(p /\ ~q) /\ T /\ ~F /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.idempand
T /\ p /\ ~q /\ ((~F /\ T /\ q) || (~F /\ ~r)) /\ ~~(p /\ ~q) /\ T /\ ~F /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ((~F /\ T /\ q) || (~F /\ ~r)) /\ ~~(p /\ ~q) /\ T /\ ~F /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ((~F /\ T /\ q) || (~F /\ ~r)) /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ ~~(p /\ ~q) /\ T /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ p /\ ~q /\ p /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ p /\ ~q /\ p /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ p /\ ~q /\ p /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ p /\ ~q /\ p /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ p /\ ~q /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ ((~F /\ T /\ q) || (T /\ ~r)) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ ((~F /\ q) || (T /\ ~r)) /\ p /\ ~q
logic.propositional.notfalse
p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ (q || (T /\ ~r)) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
p /\ ((~q /\ q) || (~q /\ ~r)) /\ p /\ ~q
logic.propositional.compland
p /\ (F || (~q /\ ~r)) /\ p /\ ~q
logic.propositional.falsezeroor
p /\ ~q /\ ~r /\ p /\ ~q