Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
T /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ T /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p
⇒ logic.propositional.idempandT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ T /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p
⇒ logic.propositional.truezeroandT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p
⇒ logic.propositional.truezeroandT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ p
⇒ logic.propositional.notfalseT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ p
⇒ logic.propositional.truezeroandT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ p
⇒ logic.propositional.notfalseT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ T /\ p
⇒ logic.propositional.truezeroandT /\ p /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.notnotT /\ p /\ T /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.truezeroandT /\ p /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.notnotT /\ p /\ T /\ p /\ ~q /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.idempandT /\ p /\ T /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.notnotT /\ p /\ T /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.idempandT /\ p /\ T /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p
⇒ logic.propositional.truezeroandT /\ p /\ T /\ p /\ ~q /\ (q || ~r) /\ p
⇒ logic.propositional.andoverorT /\ p /\ T /\ p /\ ~q /\ ((q /\ p) || (~r /\ p))
⇒ logic.propositional.andoverorT /\ p /\ T /\ ((p /\ ~q /\ q /\ p) || (p /\ ~q /\ ~r /\ p))
⇒ logic.propositional.complandT /\ p /\ T /\ ((p /\ F /\ p) || (p /\ ~q /\ ~r /\ p))
⇒ logic.propositional.falsezeroandT /\ p /\ T /\ ((p /\ F) || (p /\ ~q /\ ~r /\ p))
⇒ logic.propositional.falsezeroandT /\ p /\ T /\ (F || (p /\ ~q /\ ~r /\ p))
⇒ logic.propositional.falsezeroorT /\ p /\ T /\ p /\ ~q /\ ~r /\ p