Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

T /\ T /\ ~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ T
logic.propositional.idempand
T /\ ~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ T
logic.propositional.idempand
T /\ ~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.notfalse
~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ T /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ p /\ p /\ ~q /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ~q /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ p /\ ~q /\ p /\ ~q /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ~q /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ p /\ (q || ~r)
logic.propositional.andoveror
(~q /\ p /\ q) || (~q /\ p /\ ~r)