Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
T /\ T /\ ~q /\ ~F /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ~F
logic.propositional.truezeroand
T /\ T /\ ~q /\ ~F /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~F
logic.propositional.notfalse
T /\ T /\ ~q /\ T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~F
logic.propositional.truezeroand
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~F
logic.propositional.notfalse
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ T
logic.propositional.truezeroand
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ ~~T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ T /\ p /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.truezeroand
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.idempand
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ p /\ ~q /\ p
logic.propositional.idempand
T /\ T /\ ~q /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ p
logic.propositional.truezeroand
T /\ T /\ ~q /\ ((q /\ T) || (~r /\ T)) /\ p /\ ~q /\ p
logic.propositional.truezeroand
T /\ T /\ ~q /\ (q || (~r /\ T)) /\ p /\ ~q /\ p
logic.propositional.truezeroand
T /\ T /\ ~q /\ (q || ~r) /\ p /\ ~q /\ p
logic.propositional.andoveror
T /\ T /\ ~q /\ ((q /\ p) || (~r /\ p)) /\ ~q /\ p
logic.propositional.andoveror
T /\ T /\ ~q /\ ((q /\ p /\ ~q /\ p) || (~r /\ p /\ ~q /\ p))