Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~F /\ ~q /\ p /\ ~~T
logic.propositional.truezeroand
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~F /\ ~q /\ p /\ ~~T
logic.propositional.idempand
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~F /\ ~q /\ p /\ ~~T
logic.propositional.truezeroand
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F /\ ~q /\ p /\ ~~T
logic.propositional.notfalse
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~q /\ p /\ ~~T
logic.propositional.truezeroand
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q /\ p /\ ~~T
logic.propositional.idempand
T /\ T /\ ~F /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~~T
logic.propositional.notnot
T /\ T /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~~T
logic.propositional.notnot
T /\ T /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ T
logic.propositional.truezeroand
T /\ T /\ ~F /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p
logic.propositional.truezeroand
T /\ T /\ ~F /\ p /\ ~q /\ (q || ~r) /\ p /\ ~q /\ p
logic.propositional.andoveror
T /\ T /\ ~F /\ p /\ ~q /\ ((q /\ p /\ ~q /\ p) || (~r /\ p /\ ~q /\ p))
logic.propositional.andoveror
T /\ T /\ ~F /\ p /\ ((~q /\ q /\ p /\ ~q /\ p) || (~q /\ ~r /\ p /\ ~q /\ p))
logic.propositional.compland
T /\ T /\ ~F /\ p /\ ((F /\ p /\ ~q /\ p) || (~q /\ ~r /\ p /\ ~q /\ p))
logic.propositional.falsezeroand
T /\ T /\ ~F /\ p /\ (F || (~q /\ ~r /\ p /\ ~q /\ p))
logic.propositional.falsezeroor
T /\ T /\ ~F /\ p /\ ~q /\ ~r /\ p /\ ~q /\ p