Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

T /\ T /\ T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~q /\ ~F /\ ~F
logic.propositional.idempand
T /\ T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~q /\ ~F /\ ~F
logic.propositional.idempand
T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~q /\ ~F /\ ~F
logic.propositional.idempand
T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~q /\ ~F
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~q /\ ~F
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~q /\ ~F
logic.propositional.idempand
~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~F
logic.propositional.notfalse
~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q
logic.propositional.notnot
p /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q
logic.propositional.notnot
p /\ ~q /\ T /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ p /\ ~q
logic.propositional.notnot
p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ p /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
p /\ ~q /\ ((p /\ q) || (p /\ ~r)) /\ p /\ ~q
logic.propositional.andoveror
p /\ ((~q /\ p /\ q) || (~q /\ p /\ ~r)) /\ p /\ ~q
logic.propositional.andoveror
((p /\ ~q /\ p /\ q) || (p /\ ~q /\ p /\ ~r)) /\ p /\ ~q
logic.propositional.andoveror
(p /\ ~q /\ p /\ q /\ p /\ ~q) || (p /\ ~q /\ p /\ ~r /\ p /\ ~q)