Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

F || (T /\ ~~(T /\ p /\ ~q) /\ ~F /\ p /\ ~~~~T /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.notfalse
F || (T /\ ~~(T /\ p /\ ~q) /\ T /\ p /\ ~~~~T /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.truezeroand
F || (T /\ ~~(T /\ p /\ ~q) /\ p /\ ~~~~T /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.notnot
F || (T /\ T /\ p /\ ~q /\ p /\ ~~~~T /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.truezeroand
F || (T /\ p /\ ~q /\ p /\ ~~~~T /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.notnot
F || (T /\ p /\ ~q /\ p /\ ~~T /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.idempand
F || (T /\ p /\ ~q /\ p /\ ~~T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.notnot
F || (T /\ p /\ ~q /\ p /\ T /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.truezeroand
F || (T /\ p /\ ~q /\ p /\ ~~(p /\ ~q /\ T) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.notnot
F || (T /\ p /\ ~q /\ p /\ p /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.idempand
F || (T /\ p /\ ~q /\ p /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.idempand
F || (T /\ p /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.truezeroand
F || (T /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q)
logic.propositional.notnot
F || (T /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q)
logic.propositional.idempand
F || (T /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q)
logic.propositional.truezeroand
F || (T /\ p /\ ~q /\ (q || ~r) /\ p /\ ~q)
logic.propositional.andoveror
F || (T /\ p /\ ~q /\ ((q /\ p) || (~r /\ p)) /\ ~q)
logic.propositional.andoveror
F || (T /\ p /\ ((~q /\ q /\ p) || (~q /\ ~r /\ p)) /\ ~q)
logic.propositional.compland
F || (T /\ p /\ ((F /\ p) || (~q /\ ~r /\ p)) /\ ~q)
logic.propositional.falsezeroand
F || (T /\ p /\ (F || (~q /\ ~r /\ p)) /\ ~q)
logic.propositional.falsezeroor
F || (T /\ p /\ ~q /\ ~r /\ p /\ ~q)