Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
(~q /\ T /\ T /\ ~(~q /\ ~~r) /\ T /\ T /\ (q || p)) || F
logic.propositional.idempand
(~q /\ T /\ ~(~q /\ ~~r) /\ T /\ T /\ (q || p)) || F
logic.propositional.idempand
(~q /\ T /\ ~(~q /\ ~~r) /\ T /\ (q || p)) || F
logic.propositional.truezeroand
(~q /\ ~(~q /\ ~~r) /\ T /\ (q || p)) || F
logic.propositional.truezeroand
(~q /\ ~(~q /\ ~~r) /\ (q || p)) || F
logic.propositional.notnot
(~q /\ ~(~q /\ r) /\ (q || p)) || F
logic.propositional.demorganand
(~q /\ (~~q || ~r) /\ (q || p)) || F
logic.propositional.notnot
(~q /\ (q || ~r) /\ (q || p)) || F
logic.propositional.andoveror
(~q /\ (((q || ~r) /\ q) || ((q || ~r) /\ p))) || F
logic.propositional.absorpand
(~q /\ (q || ((q || ~r) /\ p))) || F
logic.propositional.andoveror
(~q /\ (q || (q /\ p) || (~r /\ p))) || F
logic.propositional.absorpor
(~q /\ (q || (~r /\ p))) || F