Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
(~(~(q /\ ~q) /\ ~~~(p /\ ~q) /\ ~(q /\ ~q) /\ ~~~(p /\ ~q) /\ ~(q /\ ~q) /\ ~~~(p /\ ~q)) || ~(~(q /\ ~q) /\ ~~~(p /\ ~q))) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.compland
(~(~(q /\ ~q) /\ ~~~(p /\ ~q) /\ ~(q /\ ~q) /\ ~~~(p /\ ~q) /\ ~(q /\ ~q) /\ ~~~(p /\ ~q)) || ~(~F /\ ~~~(p /\ ~q))) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.idempand
(~(~(q /\ ~q) /\ ~~~(p /\ ~q) /\ ~(q /\ ~q) /\ ~~~(p /\ ~q)) || ~(~F /\ ~~~(p /\ ~q))) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.idempand
(~(~(q /\ ~q) /\ ~~~(p /\ ~q)) || ~(~F /\ ~~~(p /\ ~q))) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.compland
(~(~F /\ ~~~(p /\ ~q)) || ~(~F /\ ~~~(p /\ ~q))) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.idempor
~(~F /\ ~~~(p /\ ~q)) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.notfalse
~(T /\ ~~~(p /\ ~q)) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.notnot
~~(p /\ ~q) /\ (~~q || (~r /\ T)) /\ T
logic.propositional.notnot
p /\ ~q /\ (~~q || (~r /\ T)) /\ T