Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
(F || T) /\ T /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ T /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroand(F || T) /\ T /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroand(F || T) /\ T /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notfalse(F || T) /\ T /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notfalse(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempand(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempand(F || T) /\ T /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand(F || T) /\ T /\ ~q /\ (q || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.andoveror(F || T) /\ T /\ ~q /\ ((q /\ p) || (~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.andoveror(F || T) /\ T /\ ((~q /\ q /\ p) || (~q /\ ~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.compland(F || T) /\ T /\ ((F /\ p) || (~q /\ ~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.falsezeroand(F || T) /\ T /\ (F || (~q /\ ~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.falsezeroor(F || T) /\ T /\ ~q /\ ~r /\ p /\ ~q /\ p