Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

(F /\ r) || q || (~(p /\ p) -> ((F /\ r) || q || ~~(p /\ p)))
logic.propositional.falsezeroand
F || q || (~(p /\ p) -> ((F /\ r) || q || ~~(p /\ p)))
logic.propositional.falsezeroand
F || q || (~(p /\ p) -> (F || q || ~~(p /\ p)))
logic.propositional.falsezeroor
q || (~(p /\ p) -> (F || q || ~~(p /\ p)))
logic.propositional.falsezeroor
q || (~(p /\ p) -> (q || ~~(p /\ p)))
logic.propositional.idempand
q || (~p -> (q || ~~(p /\ p)))
logic.propositional.notnot
q || (~p -> (q || (p /\ p)))
logic.propositional.idempand
q || (~p -> (q || p))
logic.propositional.defimpl
q || ~~p || q || p
logic.propositional.notnot
q || p || q || p
logic.propositional.idempor
q || p