Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

((~(~q /\ ~~~p /\ ~q /\ ~~~p) || (~~q /\ ~(~q /\ ~~~p /\ ~q /\ ~~~p))) /\ (~~(r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p /\ ~q /\ ~~~p)))) || (~(~q /\ ~~~p /\ ~q /\ ~~~p) /\ ~~~~p)
logic.propositional.absorpor
(~(~q /\ ~~~p /\ ~q /\ ~~~p) /\ (~~(r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p /\ ~q /\ ~~~p)))) || (~(~q /\ ~~~p /\ ~q /\ ~~~p) /\ ~~~~p)
logic.propositional.idempand
(~(~q /\ ~~~p) /\ (~~(r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p /\ ~q /\ ~~~p)))) || (~(~q /\ ~~~p /\ ~q /\ ~~~p) /\ ~~~~p)
logic.propositional.idempand
(~(~q /\ ~~~p) /\ (~~(r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p)))) || (~(~q /\ ~~~p /\ ~q /\ ~~~p) /\ ~~~~p)
logic.propositional.idempand
(~(~q /\ ~~~p) /\ (~~(r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p)))) || (~(~q /\ ~~~p) /\ ~~~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ (~~(r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p)))) || (~(~q /\ ~~~p) /\ ~~~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T /\ T) || (~~q /\ ~(~q /\ ~~~p)))) || (~(~q /\ ~~~p) /\ ~~~~p)
logic.propositional.idempand
(~(~q /\ ~p) /\ ((r /\ T) || (~~q /\ ~(~q /\ ~~~p)))) || (~(~q /\ ~~~p) /\ ~~~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~~~p)))) || (~(~q /\ ~~~p) /\ ~~~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || (~(~q /\ ~~~p) /\ ~~~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || (~(~q /\ ~p) /\ ~~~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || (~(~q /\ ~p) /\ ~~p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || (~(~q /\ ~p) /\ p)
logic.propositional.demorganand
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || ((~~q || ~~p) /\ p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || ((q || ~~p) /\ p)
logic.propositional.notnot
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || ((q || p) /\ p)
logic.propositional.absorpand
(~(~q /\ ~p) /\ ((r /\ T) || (q /\ ~(~q /\ ~p)))) || p
logic.propositional.truezeroand
(~(~q /\ ~p) /\ (r || (q /\ ~(~q /\ ~p)))) || p
logic.propositional.demorganand
((~~q || ~~p) /\ (r || (q /\ ~(~q /\ ~p)))) || p
logic.propositional.notnot
((q || ~~p) /\ (r || (q /\ ~(~q /\ ~p)))) || p
logic.propositional.notnot
((q || p) /\ (r || (q /\ ~(~q /\ ~p)))) || p
logic.propositional.demorganand
((q || p) /\ (r || (q /\ (~~q || ~~p)))) || p
logic.propositional.notnot
((q || p) /\ (r || (q /\ (q || ~~p)))) || p
logic.propositional.absorpand
((q || p) /\ (r || q)) || p
logic.propositional.andoveror
((q || p) /\ r) || ((q || p) /\ q) || p
logic.propositional.absorpand
((q || p) /\ r) || q || p
logic.propositional.absorpor
q || p