Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ~~(~~p /\ ~q) /\ T /\ T /\ ~q /\ ~~T /\ T /\ p /\ T /\ p
⇒ logic.propositional.idempand((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ~~(~~p /\ ~q) /\ T /\ T /\ ~q /\ ~~T /\ T /\ p
⇒ logic.propositional.idempand((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ~~(~~p /\ ~q) /\ T /\ ~q /\ ~~T /\ T /\ p
⇒ logic.propositional.truezeroand((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ T /\ ~q /\ ~~T /\ T /\ p
⇒ logic.propositional.truezeroand((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ T /\ p
⇒ logic.propositional.truezeroand((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.idempand((T /\ q) || (T /\ ~r)) /\ ~q /\ ~F /\ ~~~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notfalse((T /\ q) || (T /\ ~r)) /\ ~q /\ T /\ ~~~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.truezeroand((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~(T /\ p /\ ~q) /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot((T /\ q) || (T /\ ~r)) /\ ~q /\ T /\ p /\ ~q /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.truezeroand((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ ~~(~~p /\ ~q) /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ ~~p /\ ~q /\ ~q /\ ~~T /\ p
⇒ logic.propositional.idempand((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ ~~p /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ p /\ ~q /\ ~~T /\ p
⇒ logic.propositional.idempand((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroand((T /\ q) || (T /\ ~r)) /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempand((T /\ q) || (T /\ ~r)) /\ ~q /\ p
⇒ logic.propositional.truezeroand(q || (T /\ ~r)) /\ ~q /\ p
⇒ logic.propositional.truezeroand(q || ~r) /\ ~q /\ p
⇒ logic.propositional.andoveror(q /\ ~q /\ p) || (~r /\ ~q /\ p)
⇒ logic.propositional.compland(F /\ p) || (~r /\ ~q /\ p)
⇒ logic.propositional.falsezeroandF || (~r /\ ~q /\ p)
⇒ logic.propositional.falsezeroor~r /\ ~q /\ p